Two PhD positions available:

We wish to recruit highly motivated students to join an active team of researchers located within Heriot-Watt University in the attractive city of Edinburgh. Applicants should have, or expect to obtain a 1st Class Honours degree in a relevant numerate discipline, for example Physics, Electrical and Electronic Engineering, or Materials Science. The studentship comes with a standard ESPRC stipend of £14,100 per annum for a period of four years. University Fees are fully covered by the studentship.

These experimental PhD projects, motivated by future quantum technologies, offer a rare opportunity to gain a wide spectrum of experience with semiconductor device design, nano-fabrication, nano-optics, laser spectroscopy, cryogenics, and sophisticated electronics. The research is multi-disciplinary, involving: condensed-matter physics, quantum optics, materials science, and quantum information processing. We offer a world-class laboratory and a strong network of international collaborators. Please send inquiry emails to Prof. Brian Gerardot ().

Funding Notes: Four years full funding of both fees and stipend are included. This studentship is available to EU applicants only.

Project 1:

An artificial atom in a two-dimensional semiconductor

Single-photon sources are crucial for emerging quantum technologies. An intriguing host for a solid-state quantum emitter is a two-dimensional semiconductor. Discovered in 2015, 2D quantum emitters possess unique properties such as spin-valley coherence and optical selectivity. This new, rapidly emerging field simultaneously takes advantage of significant advances in 2D semiconductors beyond graphene and the remarkable progress in quantum optics with semiconductor quantum dots. The goals of project are to identify and characterize the nature of the 2D quantum emitters, develop ways to coherently optically control and manipulate the quantum emitter spins and emitted photons, and find strategies to realize fully functional integrated devices suitable for future quantum technologies.

Project 2:

Quantum technologies with an ideal source of indistinguishable single photons

Indistinguishable single photons are an essential resource for quantum photonic logic gates and networking. Among the various approaches to generate identical light quanta, resonance fluorescence (RF) from a semiconductor quantum dot (QD) is one of the most promising for practical technological implementation. This project will exploit recent advances in the efficient generation of indistinguishable single photons to implement novel quantum networking and quantum optics schemes for the first time. We will work closely with other experimental groups (Dr. Alessandro Fedrizzi, Dr. Jonathan Leach, Prof. Danielle Faccio, and Prof. Gerald Buller) in a new joint laboratory as well as with leading theorists (e.g. Dr. Erik Gauger and Prof. Erika Andersson at Heriot-Watt, Dr. John Jeffers at Strathclyde).


There are currently no funded post-doc positions available. We are however happy to support suitable candidates for fellowships:

 

EPSRC Fellowships,
Royal Societ of Edinburgh Personal Research Fellowships,
Royal Society University Research Fellowships,
Dorothy Hodgkin Fellowships,
Newton International Fellowships ,
1851 Royal Commission Fellowships,
Leverhulme Early Career Fellowships,
EU Marie Curie Fellowships
 

Latest News

Publications

Physical Review Letters
Cover, May 2008

 prl_may2008_cover


View all publications...